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1. Introduction

One of the most difficult strengths for a composite to be 

predicted is the longitudinal compressive one.

This is mainly because a key parameter, i.e., an initial 

fiber misalignment angle necessary for analyzing a 

longitudinal compressive failure, is difficult to measure.

Even though initial fiber misalignment angle is assumed, 

a reasonable analysis for a fiber kinking failure is not easy 

to achieve.

In processing a composite, a fiber misalignment is almost 

inevitable, and a longitudinal compression induces a shear 

stress component in a misaligned coordinate system.



1. Introduction

The shear stress component will generate a misalignment 

angle increment before the composite failure.

In the misaligned coordinate system defined by the     

overall mis-angle (equal to the initial plus the increment), 

the shear stress component will cause the matrix to fail, 

while the axial one brings the fiber to a failure.

Whichever occurs first corresponds to the longitudinal 

compressive strength of the composite.

Two issues must be addressed before the longitudinal 

compressive strength is evaluated. One is the fiber mis-

alignment angle increment, and another is matrix true 

stresses.
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2. Homogenized stresses

In mechanics of continuum media, a stress at a point is 

defined as averaged one of those on an infinitesimally 

small element containing the point through
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For a composite, such an element (called RVE) cannot be 

infinitesimal, since both the fiber and matrix must be 

contained in it, leading to
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So, no rigorous stress of a composite exists.



2. Homogenized stresses

Using a bridging equation,                            ,  one obtains}]{[}{ f
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First, Bridging Model gives, perhaps, simplest expressions 

for all of the bridging tensor elements, leading to closed-

form formulae for internal fiber and matrix stresses:

Although the bridging tensor [aij] can be also determined 

by another micromechanics model, Bridging Model shows 

incomparable advantages over any other models.  



2. Homogenized stresses
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2. Homogenized stresses

in which, {11, 22, 33, 23, 13, 12} are the arbitrary stress 

vector applied on the composite. All of the other bridging 

tensor elements are zero.

Second, Bridging Model is overall more accurate than 

most other micromechanics models.

A comparison between the experiments and the predictions 

by 15 most well known models for the elastic properties of 

9 composites used in world-wide failure exercises (WWFEs) 

shows that Bridging Model is overall the most accurate.

All the predictions use the same input data provided by the 

exercise organizers.



Comparison between predictions of 15 most well known models 

and experiments for composites used in WWFEs  

2. Homogenized stresses



2. Homogenized stresses

Several other groups have also confirmed high accuracy of 

Bridging Model through their comparative studies.

Also in an article published in Materials (15: 5090, 2022), 

Bridging Model was proven to be the best among the four 

analytical micromechanics models. 

https://doi.org/10.3390/ma15155090

It was reported in Int. J. Impact Engng. (36: 899–912, 2009) that 

Bridging Model was the most accurate within the six models 

studied. https://doi.org/10.1016/j.ijimpeng.2008.12.012

In open-access publication, Bridging Model was verified as the 

best among 11 models investigated. 

http://doi.org/10.5772/50362



Third, when a composite is subjected to an in-plane load, 

the internal fiber and matrix stresses obtained using 3D 

and 2D Bridging Model formulae are the same, but are 

different if any other micromechanics model is used.

This is because the other model starts with determination 

of the compliance tensor [Sij] for the composite. Then, the 

bridging tensor [aij] is back calculated from the [Sij]. This 

cannot guarantee the resulting [aij] to be always in upper 

triangular form.  

2. Homogenized stresses

So, 3D bridging tensor of other model has to be used, and 

Bridging Model consumes least amount of calculations. 



2. Homogenized stresses

Fourth, when the matrix undergoes a plastic or rubber-

like elastic deformation, the composite constitutive rela-

tions by Bridging Model are still in closed-form.

Fifth, when interface debonding occurs in between fiber 

and matrix, a relative slippage displacement induced from  

debonded fiber and matrix interfaces has been explicitly 

incorporated into the composite constitutive relations by 

Bridging Model. 

For this incorporation, only transverse tensile strength of 

the composite is additionally required. 
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3. True stresses

Sufficient evidences have shown that the elastic properties 

of a composite predicted by a well established model such 

as Bridging Model are accurate enough.

However, even using measured data to define compliance 

tensor [Sij], a predicted strength of the composite upon the 

internal stresses obtained from the below bridging tensor 

can still be far away from a reality 

as long as the internal stresses are compared with the fiber 

and matrix original strengths measured monolithically.
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This dilemma has long been recognized in the community, 

and more than half a century ago researchers have pointed 

out that in-situ constituent strengths must be employed in 

criteria to assess a constituent failure.

However, experiments can only measure material original 

strengths such as matrix tensile, compressive and shear 

strengths. 

Nobody knows how to measure an in-situ strength of a 

constituent, and even how many in-situ strengths exist is 

not known yet.

3. True stresses



We have found that once the homogenized stresses of the 

constituents are converted into true values, almost all intra-

laminar failures can be reasonably estimated.

According to Eshelby, a fiber stress field is uniform no 

matter what kind of load is applied to the composite, and  

thus the fiber true and homogenized stresses are the same:
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Matrix true stresses are obtained by multiplying its homo-

genized counterparts with stress concentration factors 

(SCFs) of the matrix in the composite.

3. True stresses



A plate with a hole generates a stress concentration when 

subjected to an in-plane tension.
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When the hole is filled with a fiber different from matrix 

in properties, stress concentrations occur as well.

3. True stresses
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A matrix SCF cannot be defined following a classical way. 

Otherwise, if an interface crack occurs, matrix stresses at 

crack tip are singular, and the classical method would give 

an infinite SCF. We need to find a new definition.

3. True stresses



As classical definition for an SCF is “point-

wise stress (0D) over external one (averaged 

w.r.t. surface where the stress is applied, i.e., 

a 2D quantity)”, a matrix SCF can only be 

defined as “a line-averaged stress (1D) over

volume-averaged one (3D)”.

A matrix SCF cannot be defined following a classical way. 

Otherwise, if an interface crack occurs, matrix stresses at 

crack tip are singular, and the classical method would give 

an infinite SCF. We need to find a new definition.

The line-averaging should be along outward 

normal to the failure surface.

3. True stresses
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obtained by Bridging Model,  is 

angle between the normal and load. 
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For instance, a transverse SCF of 

the matrix is defined as

Outward normal: same with tension；

3. True stresses
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For instance, a transverse SCF of 

the matrix is defined as

Outward normal: same with tension；

3. True stresses

in inclination with 

compression.



Two quantities below must be known in advance before a 

matrix SCF is derived: 

(1) the matrix stresses by elasticity solution in coaxial cy-

linder assemblage (CCA) model subjected to the load;

(2) position of the outward normal to the failure surface 

of the composite in the CCA model under the load.

The matrix stress field in a CCA model under almost any 

single load with either perfect or debonded interface can 

be found in the literature, while the second quantity can 

be determined through experimental observations.

3. True stresses



Therefore, almost all possible SCFs of the matrix in a com-

posite have been successfully derived.  

Let                                                                  be the matrix 

homogenized stress increments determined by any but 

preferably by Bridging Model, the overall true stresses of 

the matrix at the current load step are given by
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The various matrix SCFs are defined as follows. 

3. True stresses
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3. True stresses



SCFs of the matrices in the 9 material systems used in WWFEs

Simply speaking, except for longitudinal strengths of a continuous 

fiber composite, a current prediction for any other composite strength 

differs from reality at least 1.4 times and at most 7.7 times.

3. True stresses
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4. Physical failure criteria

Having obtained fiber and matrix true stresses, we are 

able to detect a composite failure, which must correspond 

to a fiber or matrix failure.

Any failure of fiber or matrix is assessed by comparing its 

true stresses directly with its original strengths.

4.1 Criteria for fiber failures

Fiber is thin, similar to a slender bar, and mainly sustains 

an axial load. The first strength theory in Mech. of Mater. 

textbook is best applicable to detect a fiber failure. 
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4. Physical failure criteria

A fiber failure is attained if any of the following is fulfilled

,       (                     ) are the first, third principal stresses   

.       ,    are the fiber axial tensile, compressive strengths
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4.2 Criteria for matrix failures

The loads assumed and failure modes of the matrix are 

much more complicated than the fiber, and various fai-

lure criteria for it have been established based on physi-

cal, mathematical and phenomenological principles.



4. Physical failure criteria

Mathematically, failure locus is multifunction of stresses 

and strains. Expanding it into a series and retaining only 

low items, the expanding coefficients are determined by 

measured strengths under simple types of loads.

Tsai-Wu criterion is a typical of such kind.

Physics principle originates from Mohr’s geometrical 

expression for a stress state: plot a failure stress state 

into a Mohr’s circle, and the common tangents to all 

such failure stress circles generates a failure envelope.



4. Physical failure criteria

For any given 2D stress state, a necessary and sufficient 

condition for an isotropic material to attain a failure status 

is that its stress circle is in an inward tangent to the failure 

envelope.

Although most failure criteria have been established phe-

nomenolocally, the choice of a criterion from establishing  

foundation viewpoint should obey: physical  mathemati-

cal  phenomenological.

In order to establish a physics criterion for a matrix com-

pressive failure, we approximate the failure envelope using 

a parabola constructed from matrix compressive and 

shear strengths shown below.
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Through a simple geometrical analysis, the parabolic 

equation for the failure envelope is found to be
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4. Physical failure criteria



4. Physical failure criteria

and       are the matrix original compressive and shear 

strengths measured from monolithic material specimens.
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When matrix under true stresses                     dominated by 

compression attains failure, the stress circle must be in an 

inward tangent with the parabola, and the stresses at the 

contacting point,                           , fulfills 
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4. Physical failure criteria

On the matrix failure surface, the shear stress component 

is given by
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This formula is of critical importance to derive a kinking 

failure condition for a composite under a longitudinal 

compression. 
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4. Physical failure criteria

The failure surface angle can be determined from
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5. Fiber mis-angle increment

Let composite with an initial fiber misalignment angle      

be subjected to a longitudinal compression, which can be 

decomposed into an axial normal, a shear and a transverse 

normal stress components.
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The transverse stress component can be neglected due to 

the small mis-angle, but the shear one will amplify the 

angle and generate a misalignment angle increment       .1,f
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When the composite assumes the longitudinal compressive 

strength, the angle increment attains its maximum. 

5. Fiber mis-angle increment

In the misaligned coordinate system defined by the overall 

angle , any applied load {11,22,33} generates 

the following stress components
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5. Fiber mis-angle increment

In the above, is along the fiber axial direction. When 

11<0 and 22=12=0, the stresses in the misaligned coordi-

nate system are resulted from a longitudinal compression. 
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As aforementioned, it is critical for us to derive a formula 

for the fiber misalignment angle increment, .1,f
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First of all, the fiber and especially the matrix true stresses 

at the given load 11,  , are calculated using 

Bridging Model and the matrix true stress theory.  
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Supposing the matrix attains failure, the shear stress on  

the matrix failure surface reads



5. Fiber mis-angle increment
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On the other hand, the matrix true shear stress in the 

composite subjected to an in-plane shear is given by
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Therefore, when the matrix assumes the true shear stress 

on its failure surface, it is equivalent that the matrix be 

subjected to following in-plane shear load
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5. Fiber mis-angle increment

The matrix point-wise strain in the composite due to the 

equivalent shear load is found to be
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plifying an expression. 
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The mis-angle increment,        , will be 

determined on that averaged axial dis-

placement of the RVE be zero.
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5. Fiber mis-angle increment

In order to evaluate the axial displacement, we subdivide 

the RVE into the following two parts:

=
x3
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+

x2

x3 x3

x2

The contributions from the two parts to the axial displa-

cement are derived respectively as follows.

In the first part containing the fiber, the averaged axial 

displacement of a longitudinally cross-section parallel to 

x2 axis is consisted of two portions. 



5. Fiber mis-angle increment

The first portion is resulted from the matrix, containing 

the displacements by both the shear strains and an orien-

tation, whereas the second is from the fiber orientation:
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The second part of RVE without fiber only generates 

shear strains, which induce an averaged axial displace-

ment for the RVE as schematically indicated below.



5. Fiber mis-angle increment
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In summary, the averaged axial displacement of a longi-

tudinally cross-sectional plane is found to be:
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Letting the averaged axial displacement of the RVE be 

zero, i.e.,

5. Fiber mis-angle increment
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one obtains:

As the equivalent shear stress on the right hand side also 

depends on the misalignment angle increment, an itera-

tion has to be used for solution in which the angle incre-

ment attains a convergence and at the same time 1 is 

assumed in the physics failure criterion.
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6. Compre.-strength of UD

Steps for evaluating a longitudinally compressive strength 

of a unidirectional (UD) composite are summarized below.

(1) Input parameters, including fiber elastic constants and 

compressive strength, matrix elastic constants, and shear 

and compressive strengths, fiber volume fraction and fiber 

initial misalignment angle.

(2) For any longitudinal compression with 11<0 and 22= 

12=0, iteratively solve for the misalignment angle incre-

ment so that the following equation is fulfilled1,f

c
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The solution can be achieved through bisection highlighted 

as follows.

• Giving  , calculate stresses                     in misaligned 

coordinate system defined by an overall mis-angle；
),,( 122211

III 1,f

c

• calculate fiber and matrix true stresses                          

and                           ; 
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• calculate the equivalent shear stress through
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• within  -900<       <900,  find out two        such that one 

of the resulting functions f is positive, whereas other is 

negative; 

1,f

c
1,f

c

• bisect the previous interval for a mis-angle increment 

until a suitable        is reached so that the function  f is 

near to zero. 
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(3) Using the obtained      , find out the positive root >0 in 

the physics failure criterion, and amplify the initial 11<0 

with the  before go to the step (2).

1,f

c
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Repeat applying a modified 11 until 1 is attained, and 

the resulting 11 is taken as the kinking failure load.

(4) With the final misaligned angle                       , if the 

longitudinally applied load 11 in magnitude is higher 

than the kinking failure load, the composite longitudinal 

strength is attained by a fiber kinking failure; otherwise, 

the composite strength is assumed at the fiber failure.

1,0, f

c

f

c

f

c  

An Excel table based program for finding the misalign-

ment angle increment       subjected to the constraint of 

1 has been developed, and can be freely available.

1,f

c
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As an example, let us evaluate the longitudinal compres-

sive strengths of the 9 independent material systems used 

in three world-wide failure exercises (WWFEs). 

Except for the initial fiber misalignment angles, all of the 

other input parameters are directly taken from the exer-

cise organizers.  

Measured strengths specifically longitudinal compressive 

strengths of the 9 composites have been provided by the 

exercise organizers as well.  

6. Compre.-strength of UD



Constituent properties used in WWFEs
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An initial fiber misalignment angle has to be assumed. 

When zero initial angle, i.e.        =00, is assumed, the longi-

tudinal compressive strength is attained always at a fiber 

failure, with the compressive strength given by 

,0f

c

11 11 .( )c f

f m u cV V a  

Applying this formula to the 9 composites and comparing 

the predictions with the measured data, the averaged cor-

relation error is 25.1%. 

The other predictions are made by taking =10 and 1.50.
,0f

c
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The results show that when fiber initial mis-angle attains 

10, averaged correlation error between the predictions and 

measurements is reduced from 25.1% at no misalignment 

to 19.5%, which is within 20%. 

If the initial mis-angle is set to 1.50, the averaged correla-

tion error is further reduced to 18.9%, which is only a 

little improvement in accuracy.

According to a classical measurement by Yurgartis in 

1980s for initial fiber misalignment angles, more than 

80% fibers assumed an initial mis-angle of 10.

6. Compre.-strength of UD



Yurgartis claimed that the initial fiber misalignment angle 

in a composite is not the maximum mis-angle assumed by 

a single fiber, but is a statistically averaged value.

As such, a practical measurement for an initial fiber mis-

angle is not easy to achieve.

The results also demonstrate that even though fiber mis-

alignment is taken into account, a limited number of pre-

dicted longitudinal compressive strengths show large 

deviation with the measured counterparts.

6. Compre.-strength of UD



The big correlation error is most likely resulted from an 

inaccurate measurement for the composite longitudinal 

compressive strength.

It is well known that the measurement for a longitudinal 

compressive strength is most difficult among the uniaxial 

strength data of a UD composite.

Moreover, the longitudinal compressive strength of the 

composite is also affected by the fiber and matrix compre-

ssive strengths, both of which are not easy to measure.

6. Compre.-strength of UD
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7. Compre.-strength of any 

For any fibrous composite, its failure and strength predic-

tion can be made as per the following steps.

In 2nd step, an element is cut to 

any number of slides, each of 

which contains at most only 

straight fiber yarn segments. 

In 1st step, any composite structure is disretized into a 

series of brick elements, whose loads can be determined 

through the overall FEM solution. Each element is loaded 

uniformly. 



7. Compre.-strength of any 

In 3rd step, each yarn segment in a slide is considered as a 

UD or uniaxially aligned short fiber composite, whose true 

stresses in fiber and matrix can be evaluated through 

Bridging Model and the true stress theory.

If no fiber is in a slide, it is considered as a pure matrix, 

whose stresses can also be determined by Bridging Model.

In 4th step, the true stresses in fiber and matrix in a local 

coordinate system are transformed into those in the global 

one of the element.



7. Compre.-strength of any 

In 5th step, an assemblage of, e.g., iso-strain or iso-stress 

scheme is applied to determine the overall averaged true 

stresses in the fiber and matrix of the element.

Based on these true stresses, various failures of the element 

are detected by respective failure criteria, in which only the 

original fiber and matrix strengths are needed.

Question arises: how to predict a compressive strength of 

an element when non-uniaxial fibers such as textile fiber 

fabrics occur in the element?



7. Compre.-strength of any 

Then, the calibrated fiber compressive strength can be 

used to assess a fiber strength failure, without considering 

fiber misalignment any more.

A possible answer is: to adjust the axial compressive 

strength of the fiber from predicted longitudinal compres-

sive strength of a UD composite from the same material 

system by taking fiber kinking failure into account.
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8. Conclusion 

Analytical formulae for evaluating a composite longitudi-

nal compressive strength incorporated with fiber kinking 

failure are presented in this talk. 

A key step is the application of matrix true stress theory. 

Without the true stresses, the shear component cannot 

bring matrix to a failure status.

It is the shear stress component induced from misaligned 

compression that causes the fiber kinking failure. 

Only the matrix true stresses based on perfect interface 

bonding are considered in this talk. Future analysis should 

take an interface debonding into account.
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