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This collection contains the proceed-
ings of the 21st European Conference on Composite Materials 
(ECCM21), held in Nantes, France, July 2-5, 2024. ECCM21 is the 
21st in a series of conferences organized every two years by 
the members of the European Society of Composite Materials 
(ESCM). As some of the papers in this collection show, this 
conference reaches far beyond the borders of Europe. 
 The ECCM21 conference was organized by the Nantes 
Université and the Ecole Centrale de Nantes, with the support 
of the Research Institute in Civil and Mechanical Engineering 
(GeM). 

Nantes, the birthplace of the novelist Jules 
Verne, is at the heart of this edition, as are the 
imagination and vision that accompany the 
development of composite materials. They are 
embodied in the work of numerous partici-
pants from the academic world, but also of the 
many industrialists who are making a major 
contribution to the development of composite 
materials. Industry is well represented, reflect-
ing the strong presence of composites in many 
application areas. 

With a total of 1,064 oral and poster presenta-
tions and over 1,300 participants, the 4-day 

event enabled fruitful exchanges on all aspects of compos-
ites. The topics that traditionally attracted the most contribu-
tions were fracture and damage, multiscale modeling, dura-
bility, aging, process modeling and simulation and additive 
manufacturing.

However, the issues of energy and environmental transition, 
and more generally the sustainability of composite solu-
tions, logically appear in this issue as important contextual 
elements guiding the work being carried out. This includes 
bio-sourced composites, material recycling and reuse of 
parts, the environmental impact of solutions, etc.

We appreciated the high level of research presented at the 
conference and the quality of the submissions, some of 
which are included in this collection. We hope that all those 
interested in the progress of European composites research 
in 2024 will find in this publication sources of inspiration and 
answers to their questions.
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Abstract 
Microstructural features governing FRP compressive failure initiation were identified by analysing 
computational simulations of 2D FRP microstructures with random fibre waviness. Results showed that 
failure initiation was not governed by magnitude of fibre misalignment angle (θf) but rather by the 
pattern or spatial variation of θf, as well as fibre volume fraction (Vf). This finding remained consistent 
regardless of changes to FRP microstructural parameters.  

 
 

1. Introduction 
The industrial popularity of  fibre reinforced polymers (FRPs), for example in aerospace and medicine, 
can be attributed to their range of attractive properties including high specific strength and stiffness [1]. 
However, FRPs are notably limited by their compressive performance. A considerable challenge in 
addressing this limitation is the understanding of factors that initiate or promote FRP compressive 
failure. In existing literature [2,3], much attention has been given to exploring the effect of fibre 
misalignment (θf) on FRP compressive strength, and the negative correlation between them has been 
well established. Some studies [3] suggest that maximum misalignment angle (θf,max) is an accurate 
predictor for FRP compressive strength, implicating θf magnitude as the main factor initiating 
compressive failure. However, there is evidence that other FRP microstructure parameters, such as the 
spatial variation of fibre misalignment within the composite, could also play a significant role [3,4].  
 
This work aims to uncover the underlying microstructural features that initiate FRP compressive failure 
through systematic variation of FRP microstructural parameters, implemented through variation of fibre 
misalignment field. Parameters varied include fibre misalignment field correlation length (length over 
which the field’s autocorrelation function reduces to 0.1), model size, and mean fibre misalignment 
angle 𝜃𝜃𝑓𝑓̅̅̅. All θf fields result in random fibre waviness. Through computational simulation of the 
behaviour of 2D FRP microstructures under compressive load, the microstructural features common to 
the critical region surrounding the failure initiation site were highlighted. 
 
2. Method 
 
2.1.  Generation of fibre misalignment angle field 
The fibre misalignment angle field generation method begun with the definition of a 2D power spectral 
density (PSD) function: 
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𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑆𝑆o exp [− ( 𝑤𝑤𝑥𝑥
𝑤𝑤0𝑥𝑥

)
2

− (
𝑤𝑤𝑦𝑦
𝑤𝑤0𝑦𝑦

)
2

] 
(1) 

 
where 𝑤𝑤 are spatial frequencies (with units of 1/μm), and subscripts denote frequency along (𝑥𝑥) or 
transverse (𝑦𝑦) to the fibre direction. 𝑆𝑆𝑜𝑜, 𝑤𝑤0𝑥𝑥, 𝑤𝑤0𝑦𝑦 are tuning variables used to achieve the fibre 
misalignment field variations summarised in Table 1 (baseline values are representative of prepreg 
CFRPs [4]). All fields have a θf standard deviation of 1.15◦. 
 
From the defined PSD, signal processing theory [4] was then used to transform the 2D PSD function to 
a 2D signal, which generated stochastic fibre misalignment angle θf fields (Figure 1); this allowed many 
random realisations of θf fields to be generated with the same PSD.  
 
The fibres have a diameter 𝜙𝜙f = 7 μm, and the FRP has a fibre volume fraction 𝑉𝑉f = 60% assuming 3D 
hexagonal packing; the 2D models represent one of the FRP symmetry planes where the interfibre 
distance is minimised (8.61 μm on average). The θf fields represent each fibre individually, with a 
resolution in the fibre longitudinal direction of 3.5𝜙𝜙f = 24.5 μm. Exponential fading of misalignment 
angle was applied as an extension of each fibre, to minimise initiation of edge failures [5].  
 

Table 1. FRP fibre misalignment field variations. 
 

Variation Number of 
random 

realisations 

𝜃𝜃𝑓𝑓̅̅̅ 
(◦) 

Model Size (μm) Correlation Length (μm) 
 Length 

L 
Height 

H 
Longitudinal 
𝑙𝑙𝑥𝑥 = 𝑤𝑤0𝑥𝑥

−1/2 
Transverse 

𝑙𝑙𝑥𝑥 = 𝑤𝑤0𝑦𝑦
−1/2 

Baseline 250 1.50 7938 7921 1350 730 
M1 100 0.75 7938 7921 1350 730 
M2 100 3.00 7938 7921 1350 730 
S1 100 1.50 5586 5579 1350 730 
S2 100 1.50 11221 11193 1350 730 
C1 100 1.50 7938 7921 1080 580 
C2 100 1.50 7938 7921 1690 910 

 
 

 
 

Figure 1. Typical contour plot of fibre misalignment angle θf field (baseline variation). 
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Each θf field was then used to define a 2D FRP microstructure; the minimum matrix layer height was 
kept constant across all adjacent fibers.  A corresponding fibre volume fraction (Vf) field was calculated 
for each FRP microstructure to capture local changes in fibre volume fraction.   
 
2.2.  Computational simulation 
The defined 2D FRP microstructures were created computationally in Abaqus and loaded in 
compression using Riks analysis. Element size followed the resolution of the θf fields. The orthotropic 
carbon-fibres and non-linear elastic-plastic epoxy-matrix were modelled using plane strain elements 
with reduced integration and hourglass control.  
 
For each FRP simulation, the global stress-strain behaviour, as well as the plastic strain distribution at 
peak global stress was extracted. The FRP’s failure initiation site was subsequently defined as the 
location exhibiting highest plastic strain when the FRP reaches peak global stress. 
 
2.3.  Post-processing 
To identify microstructural features common to the failure initiation sites, for each θf field variation, the 
following averaging process was used (Figure 2) [6]: 

1. For each random FRP realisation, redefine its origin as its failure initiation site. 
2. Superimpose all fibre misalignment angle fields by aligning their redefined origins. 
3. Average all fields through the number of random realisations.  
4. Repeat steps 2-3 for the FRPs’ Vf fields. 

 
 

 
 

Figure 2. Steps 1 to 3 of FRP θf field averaging process. 
 
 
3. Results 
 
3.1.  Typical failure initiation site features  
 
The averaged fibre misalignment angle and volume fraction fields (Figures 3a and 3b) show that FRP 
compressive failure initiation tends to occur in regions of high fibre misalignment as well as fibre 
volume fraction. This remained true for all FRP variations explored. 
 
The region of high fibre misalignment containing the failure initiation site extends transverse to the fibre 
direction. In fibre path terms, this indicates a region where many neighbouring fibres are locally 
misaligned in-phase. Interestingly, the averaged θf field shows regions of significantly lower θf on either 
side of the high θf region where failure initiates. This suggests that compressive failure also tends to 
localise at regions with sharp changes in fibre misalignment angle along the fibre direction. In an 
industrial setting, this would be particularly evident in components involving ply-drops or localised 
wrinkles (e.g. due to surface curvature) [7]. 
 

Averaged field

Failure 
initiation 
site

Features of typical failure 
initiation site
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The identified pattern of high and low θf surrounding the failure initiation site inherently gives rise to a 
region of high Vf, as reflected in the averaged Vf field. For regions with high Vf, or thin local matrix 
layer, less energy would be needed for the local matrix region to experience high shear strains and 
undergo unstable shear deformation (resulting in failure localisation) in comparison to other regions 
with comparable fibre misalignment angle but lower Vf. Hence, it is suggested that high Vf is not simply 
a result of the θf pattern identified but is also a preferred characteristic of failure initiation sites.  
 
 

  
(a) θf (b) Vf 

 
Figure 3. Averaged features of FRP compressive failure initiation site (baseline variation). 

 
 
To verify that the fibre misalignment pattern identified is unique to failure initiation sites and not an 
inherent property of high-θf regions within the fibre misalignment fields generated, the same averaging 
process (as described in 2.3) was conducted with the redefined origin set as the global maxima of the θf 
fields instead. The averaged fibre misalignment angle field in this case (Figure 4) reflects the typical 
features of high-θf angle regions within the defined fibre misalignment angle fields.  
 

 
 

Figure 4. Averaged features of FRP high-θf region (baseline variation). 
 

Comparing Figure 3a to Figure 4, in terms of fibre misalignment angle distribution, the typical high-θf 
region in FRPs is in stark contrast to the typical failure initiation site. Figure 4 clearly shows a high fibre 
misalignment region that extends along the fibre direction, reflecting the ratio of correlation lengths 
defined in Table 1.  
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Note that if FRPs were assumed to fail at the location of maximum θf, Figures 3a and 4 should be similar. 
With their strong dissimilarity, it is clear that fibre misalignment angle alone does not govern FRP 
compressive failure initiation. 
 
3.2.  Average θf and Vf of failure initiation sites 
In general, the changes in average θf and Vf of failure initiation sites between variations follow changes 
in maximum values (i.e. θf,max and Vf,max) of the respective fields (Figures 5a and 5b).  
 

  
(a) θf (b) Vf 

 
Figure 5. The relationship between θf,Vf of failure initiation sites and θf,max,Vf,max across FRP 

microstructure variations explored. 
 
 
3.3.  FRP compressive strength 
 

Table 2. FRP compressive strength. 
 

Variation 𝜃𝜃𝑓𝑓̅̅̅ (◦) Compressive strength (MPa) 
Baseline 1.50 986 ± 45  

M1 0.75 1264 ± 75 
M2 3.00 679 ± 26 
S1 1.50 1009 ± 49 
S2 1.50 986 ± 54 
C1 1.50 988 ± 48 
C2 1.50 997 ± 58 

 
All variations with the same 𝜃𝜃𝑓𝑓̅̅̅ exhibited similar compressive strengths (Table 2). As expected from 
existing micromechanical models [3,8], there is an inverse relationship between mean misalignment 
angle and compressive strength. Interestingly, increasing the correlation length of the fibre misalignment 
field (i.e. the size of the typical high fibre misalignment angle region) had a negligible effect on FRP 
compressive strength.   
 
4. Conclusions 
It is evident that spatial distribution of fibre misalignment angle is a key predictor of FRP compressive 
failure initiation location. Local magnitudes of fibre volume fraction and misalignment angle are also 
of importance. Overall, failure initiation of FRPs cannot be identified purely based on the maxima of 
the fibre misalignment field but rather must consider the local spatial variation of neighboring regions 
and fibre volume fraction as well. 
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