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Editorial

This collection gathers all the articles that were submitted and presented at the
20th European Conference on Composite Materials (ECCM20) which took place in
Lausanne, Switzerland, June 26-30, 2022.

ECCM20 is the 20th edition of a conference series having its roots back in time, organized
each two years by members of the European Society of Composite Materials (ESCM).

The ECCM20 event was organized by the Composite Construction laboratory (CCLab) and
the Laboratory for Processing of Advanced Composites (LPAC) of the Ecole Polytechnique
Fédérale de Lausanne (EPFL).

The Conference Theme this year was “Composites meet Sustainability”. As a result, even if all
topics related to composite processing, properties and applications have been covered,
sustainability aspects were highlighted with specific lectures, roundtables and sessions on a
range of topics, from bio-based composites to energy efficiency in materials production and
use phases, as well as end-of-life scenarios and recycling.

More than 1000 participants shared their recent research results and participated to fruitful
discussions during the five conference days, while they contributed more than 850 papers
which form the six volumes of the conference proceedings. Each volume gathers
contributions on specific topics:

Vol 1 — Materials

Vol 2 — Manufacturing

Vol 3 — Characterization

Vol 4 — Modeling and Prediction
Vol 5 — Applications and Structures
Vol 6 - Life Cycle Assessment

We enjoyed the event; we had the chance to meet each other in person again, shake hands,
hold friendly talks, and maintain our long-lasting collaborations. We appreciated the
high level of the research presented at the conference and the quality of the submissions
that are now collected in these six volumes. We hope that everyone interested in the
status of the European Composites’ research in 2022 will be fascinated by this publication.

The Conference Chairs
Anastasios P. Vassilopoulos, Véronigue Michaud
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Abstract: Currently, the useable compressive properties of a composite are restricted by set
design limits well below the expected intrinsic performance of the materials contained within.
The next generation of high-performance fibre-reinforced polymer composites will need to
address the challenge of improving the absolute performance of composites in compression. This
task requires a rethink of the whole system; not only to address practical limitations of current
materials, but their combination, interface, and their architecture. The mechanisms involved do
not simply act over the nano-, macro-, or meso-level independently, but are mutually related at
the system level, complicating the approach.

Keywords: Hierarchical; Compression; Fibre-reinforced composites

1. Introduction

In natural materials, such as wood and bone, a hierarchical framework is employed with precise
structural features at all lengthscales [1]. Whilst this level of intricacy is still beyond current
composite production, similar motifs can be made from intrinsically superior constituents, in
order to improve (artificial non-natural) composite compression response. This hierarchical
approach, with new constituent materials, and advanced assembly processes, when coupled
with digital sandboxes, permits a fresh look at the failure mechanisms, providing opportunities
to redirect, or suppress, failure modes to improve overall composite performance. The problem
can be broken down into a number of interconnected components with attention given to the
fibres, matrix and their interface/interphase, the design and lay-up of these constituents, and
investigations using new analytical frameworks. This paper will outline the fibre-reinforced
compressive weaknesses and approaches to resolve them, providing an insight into current
state-of-the-art hierarchical composites.
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2. Fibre-reinforced composites and bio-inspiration for hierarchical motifs

Fibre-reinforced composite materials are prominent in a range of applications with tensional
loading conditions demonstrating their greatest performance (in the fibre axis). Whilst fibre-
reinforced composites are used in other loading conditions, their compressive strength is
approximately 60% of their tensile strength. Composite failure does not depend on a single
element but rather a complex interconnectivity between the fibres, matrix, their interface, and
the architecture of the specimen. In some instances, improving one area, for instance a high
interface matrix-fibre adhesion, alters the failure mode of the composite e.g. inducing cohesive
matrix failure, which can be an undesirable mechanism leading to a lower ultimate composite
performance. For these reasons a holistic approach to address the compressive weakness in
composites is sought with hierarchical architectures an intriguing approach to solve the
weakness observed in compression. Looking to nature for inspiration [2, 3], a number of quite
different approaches are observed; for example, multiscale reinforcing elements with particular
orientation and support (Figure 1) [4], systems that have a strut and skeletal formation with
minimal matrix content (fibrous), or conversely brick-and-mortar (layered) like formations using
short reinforcing structures that dissipate stresses within the system, amongst other motifs.
Alternative methods to dissipate energy or impacts through shear stiffening responses in the
bulk of the material are observed but not commonly associated with a fibre-like scaffolds.

Biological Structural

Design Elements

Figure 1. Diagram of the eight most common biological structural design elements [3]. [Used
with permission from John Wiley and Sons]
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In most instances, modifications to continuous fibre-reinforced composite materials fall broadly
into categories that include, improving the interface of fibre-matrix components, introducing
mechanisms to deflect, distribute, or dissipate stress to limit areas of high stress-concentrations,
initiate tougher failure in a controlled manner to either defect or arrest the generated crack
(introducing toughen response), or targeting the generally poor delamination strength (resin
rich regions) between plies.

3. Current hierarchical composites designs and approaches

It is desirable to have fibres orientated in specified loading axis and to contain continuous fibres
as these are more efficient with respect to mechanical loading [5]. Even with these design
constraints, hierarchical approaches can be implemented to improve composite compression
properties. A schematic of the composite designs discussed in the later sections are shown in
Figure 2.

Figure 2. A schematic of the various length scales of the composite designs, from left to right, a

single fibre (matrix omitted), a bundle of fibres in a matrix, a bundle-of-bundle composite, and

a representation of a traditional unidirectional composite for comparison (shown with a gap to
more clearly illustrate the plies).

3.1 Fibres

The shape and form of high performance (non-natural) fibres have usually been chosen for
improved tensile properties and are uniform, continuous, circular, and small in diameter (~5-20
pum), but these characteristics may not be the optimal form for compressive loads. In Nature,
the form of fibril scaffolds are normally non-circular, have defined periodicals of morphological
changes, for instance bird feathers [6], and vary in diameter depending on their primary
function. Another major difference between naturally occurring fibril/fibres and those artificially
produced fibres are their hollow construction which allows for the transport of fluids throughout
the organism, or to reduce weight for specific applications (e.g. flight); these features are not
necessary for achieving ultimate mechanical performance using high performance constituents.
Natural fibrils are often supported through a helical arrangement, or through a change in density
of a porous or foam-like local structures (cellular and gradient). The complexity and refinement
of the reinforcing elements of the structure changes from large features to smaller structures,
which themselves can have specific alignment to aid support, when arranged about the parent
fibril-structure. This alignment and change in length-scale is a key feature in improved lateral
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support exhibited by these materials. These laterally supporting architectures provide adequate
dissipation and non-stress localising properties and are desirable for high performance systems
in a bid to reduce the failure mode(s) associated with the onset of kink-band formations. The
failure of composite materials in compression is often driven by poor lateral support and early
formation of kink-bands as a result of the instabilities of the loads experienced by the primary
reinforcing fibres. To mimic this lateral supporting motif, there have been multiple attempts to
add nanoreinforcement to the fibre surface/interphase which has the added benefit of reducing
stiffness mismatch between the fibre and the matrix [7]. Methods include directly
synthesising/growing nanomaterials on the surface, or depositing pre-made nanomaterials by
electrophoretic deposition or some other chemical grafting process; the simplest approach is to
coat the fibres in a size containing dispersions of nanomaterials. All these approaches suffer
from some limitations for instance difficulties in scaling production, or poor alignment of the
nanomaterial. Alignment of the nanomaterials, on the parent structure, is of particular
significance, and is one of the most challenging aspect of adding nanomaterials to mimic the
arrangements observed in biological systems. It is expected that if the nanoreinforcement is
aligned in the axis of the parent fibre there may be limited lateral support in the surrounding
interphase. However, increases in surface areas from these processes improve the mechanical
interlocking of the fibre with the surrounding matrix which can improve the
interfacial/interphase properties. Altering the morphology of the fibres’ cross-section (unduloid
or cross section shape) is a less studied approach to create supporting motifs, with either
commercial fibres acquired and further processed [8] or produced/synthesised in-house to
create the desired forms [9]. Depending on the materials chosen (carbon, glass, etc.)
synthesising non-circular cross-section fibres can have significant cost, equipment, and
processing constraints. There is also interest in well aligned nanomaterial based fibres/veils,
which satisfy the requirements for local alignment whilst containing strong, stiff, and tough
reinforcement.

3.2 Matrix

The most commonly used and modified composite matrix is epoxy (thermoset) due to the ease
of handling and manipulation at the laboratory scale. Whilst thermoplastics are generally
tougher, they require high temperatures and pressures to form around fibres, and as such they
have been studied less often. Additionally, thermoplastic moduli are low resulting in less support
for the fibres in compressive loading conditions; this along with poor compatibility between the
thermoplastic matrix and fibres leads to a reduced fibre-matrix interface and overall composite
performance. Methods to improve epoxy toughness includes the introduction of rubber
particles, and for improved stiffness the introduction of nanomaterials (typically carbon) [10].
Chemical functionalisation is frequently used to improve the dispersibility of nanomaterials in
an epoxy matrix resin system. However, the addition of nanomaterials to the matrix, even if
unagglomerated, can alter the processability, increasing viscosities, and leading to self-filtering
of the nanomaterials by the parent fibres. In natural materials there is often localised
reinforcement leading to a heterogeneous structure, yet in the majority of composite systems a
homogenous reinforcement is preferred. Further investigations into the impact of localising
adequately dispersed nanoreinforcement and their effect on failure modes [11] is an exciting
area of investigation.
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3.3 Bundle systems

Bundle systems are similar, but one order of magnitude greater in size than the fibres systems
previously described. Analogous adaptations for bundle composites are consequently desired,
with off-axis reinforcement sought. Bundle-like pultruded composite rods are commercially
available, with high alignment, allowing research into the surrounding matrices to form
bundle-of-bundles composites and hybridisations. Bundle composites bridge the reinforcement
length scales between fundamental systems and the ply level.

3.4 Ply level systems

In natural layer structures, deformation and localised failures are promoted to limit damage
progression into the whole system. To achieve the same effect in high performance materials,
the alignment of fibres within a ply may be exploited to alter and manipulate the failure modes
observed. At the ply level, the introduction of misalignment (to the loading direction) or
confined reinforcement to an area can alter the composite properties drastically. Choosing
specific arrangements that benefit the compressive properties of the system are a challenge,
and it is likely that suppression of the kink-band formation through careful consideration of
materials and layup will be a route to success.

4, Outlook

The approach of introducing hierarchical constructs to fibre-reinforced composites is not new,
however, in the most challenging loading condition of compression, there are very limited
studies. Taking a step back, the use of existing materials, processes, and architectures needs to
be revised for their suitability for use in hierarchical composite for compressive loading
conditions. Whilst the focus will remain on the constituents of the composite for improvements,
the combinations and arrangement need to be investigated to truly establish their performance
in compression. A collaboration between Imperial College London and the University of Bristol,
along with industrial partners are taking on this challenge in a five-year UK Engineering and
Physical Sciences Research Council (EPSRC) funded project. We hope to share our investigations
and results shortly.
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